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Abstract

We show that histograms of keypoint descriptor distances
can make useful features for visual recognition. Descrip-
tor distances are often exhaustively computed between sets
of keypoints, but besides finding the k-smallest distances
the structure of the distribution of these distances has been
largely overlooked. We highlight the potential of such infor-
mation in the task of particular scene recognition. Discrim-
inative scene signatures in the form of histograms of key-
point descriptor distances are constructed in a supervised
manner. The distances are computed between properly se-
lected reference keypoints and the keypoints detected in the
input image. The signature is low dimensional, computa-
tionally cheap to obtain, and can distinguish a large num-
ber of scenes. We introduce a scheme based on Multiclass
AdaBoost to select the appropriate reference keypoints.

The resulting system is capable of handling a large num-
ber of scene classes at a fraction of the time required for
exhaustively matching sets of keypoints. This supports sup-
ports a coarse-to-fine search strategy for approaches reliant
on keypoint matching. We test the idea on 3 datasets for par-
ticular scene recognition and report the obtained results.

1. Introduction

Methods for detecting local interest points or keypoints
in images have become reliable workhorses in many scene
and object recognition tasks. Keypoints are designed to be
consistently detectable under large perspective, scale and il-
lumination variations. A keypoint is usually endowed with
a descriptor which serves as a robust feature to describe the
local patch which motivated the keypoint detection. Due to
their effectiveness, keypoint detectors are frequently used
as low-level feature extractors in popular visual recogni-
tion paradigms such as the bag-of-words representation and
wide-baseline-matching. Examples include [17, 33].

∗Part of this work was done when Chin was at the Institute for Info-
comm Research, Singapore.

(a) Images of landmarks and distance profiles (actual results shown).

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
−0.1

−0.05

0

0.05

0.1

 

 

Landmark 1
Landmark 2
Landmark 3
Landmark 4

(b) The distances profiles projected onto the first-2 principal components.

Figure 1. In (a) SIFT keypoints are detected on images of 4 land-
marks and a suitably chosen reference keypoint (not shown here)
is used to generate 10 bin-histograms of descriptor distances or
“distance profiles”. It can be seen in the PCA space of (b) that the
representation is sufficiently distinct and robust for distinguishing
the landmarks which were captured from varying viewpoints.

Often when utilizing keypoints, the computation of dis-
tances between the descriptors of sets of keypoints is car-
ried out. For example, when quantizing the set of keypoints
of an image A into a bag-of-words representation using a
visual vocabulary B (each cluster center is essentially a de-
scriptor), or when matching the sets of keypoints A and B
of two adjacent scenes for image registration. However, in
such scenarios, usually only the minimum value of a set of
distances receives attention, e.g. find the cluster center in
the visual vocabulary closest to a keypoint, or find the clos-
est matching keypoint pair to establish a correspondence.
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The rest of the distances, although having been computed
already, are often ignored. We argue that the “side informa-
tion” which occurs in the main feature extraction pipeline
can serve useful purposes as well.

We demonstrate the potential of this idea on the task of
“particular scene” recognition by introducing a novel im-
age representation in the form of a histogram of keypoint
descriptor distances. The distances are computed between a
properly selected reference keypoint and the keypoints de-
tected in an image. We refer to the resulting histograms as
“distance profiles.” Fig. 1 demonstrates the idea. Note that
the reference keypoint did not arise from the input images,
but is a member of a previously accumulated keypoint li-
brary, i.e. the discriminative keypoints of the set of scenes.

The premise is that a suitably chosen reference keypoint
can induce noticeably different distance profiles for differ-
ent scenes. Moreover, if more or less the same collection
of keypoints are detected in a particular scene despite vary-
ing imaging conditions, the generated distance profiles can
act as a robust scene signature. In this paper, we propose
to apply a multiclass extension of AdaBoost to select use-
ful reference keypoints from scene images in a database. A
classifier which takes the distance profile of an image as in-
put is also constructed. Given a new image, the classifier is
very fast to evaluate, and the output presents a ranked list of
possible matches in the scene database.

Our work is part of the growing trend of harnessing con-
ventionally ignored side information to aid in the main vi-
sion task. Other examples include [24], where if we realize
that the k-nearest distances are computed anyway in pursuit
of the nearest visterm, we can actually quantize a keypoint
to the k-nearest visterms as a form of query expansion. An-
other example is [6], where instead of just finding the best
match for a test keypoint among a set of library keypoints,
the list of 0-1 matching results against the library keypoints
can be used as a descriptor for the test keypoint.

The rest of the paper is organized as follows: After sur-
veying related work in Section 2, we introduce the proposed
image representation and show how to obtain it in Section 3.
In Section 4 we explain how to build an ensemble of CART
trees grown from the distance histograms. The proposed
method is then applied on three datasets for particular scene
recognition and the results are reported in Section 5. Finally
we discuss and draw conclusions in Section 6.

2. Related Work and Motivation
“Particular scene” recognition differs from “scene cate-

gory” recognition in that the former is interested in finding
the precise location or place from which the input image
is taken, while the the latter aims to identify the rough cate-
gory or type of scene captured in the input image. Particular
scene recognition or “place” recognition has been widely
studied in robotics (e.g. [29, 25, 38]) whereby the goal is

to use visual information to establish the position of a robot
in a global reference frame. Place recognition also receives
attention more widely (e.g. [10, 35, 28]), where the objec-
tive is usually to “geo-tag” or augment images of places and
landmarks with further information.

It has been observed [35] that “scene category” recogni-
tion works best using features with high invariance which
can smooth out intraclass differences. For example, current
research efforts concentrate on the bag-of-visterms repre-
sentation [26, 23, 36] and kernels between sets of keypoints
for partial matching [11, 14, 16]. On the other hand, “par-
ticular scene” recognition thrives on features with high dis-
criminative power [35], such as matching SIFT [18] key-
points. Examples include [29, 9, 21, 25, 13, 10, 7]. These
approaches usually contain a learning step where the more
discriminatory keypoints for a particular scene are extracted
to build scene-specific models or classifiers. To name a few,
these include Support Vector Machines [25], local entropy
estimations [10] and AdaBoost [21, 7]. Nonetheless, given
a new image, evaluating the models or classifiers will gen-
erally involve steps equivalent to keypoint matching.

Other methods not relying on interest points for particu-
lar scene recognition exist. An approach to detect windows
in building facades is proposed in [1], and place recognition
can be achieved assuming that the buildings in an area have
unique window types and configurations. This is closely re-
lated to [28] where repetitive facades of urban buildings are
considered as unique textures which can be used for recog-
nition. A new image feature based on the PCA of Census
Transform histograms is proposed in [35] and is found to
be effective for the task of particular scene recognition. Re-
cently, image epitomes [20] are used to concisely capture
the appearance and geometric structure of a physical envi-
ronment. It is claimed that the representation supports very
efficient and robust location recognition. Another work [2]
exploited GPS information to aid in building recognition.

Although highly effective, keypoint matching in general
is a computationally expensive process. Many ideas have
been proposed to speed up keypoint matching. Keypoint
descriptors can be indexed in a kd-tree data structure with
a best-bin-first retrieval strategy [4] to enable fast approx-
imate nearest neighbour operations. Recently, randomiza-
tion for kd-trees have been proposed [32] for further speed-
ups at the expense of more storage space. Ke and Suk-
thankar [12] performed PCA on the orientation histograms
to arrive at more concise SIFT descriptors with improved
accuracy. Considerable speed-up is achieved by introducing
a training stage and casting keypoint matching as a classifi-
cation problem [15, 22]. In these methods a new keypoint is
matched directly based on the appearance of its local patch
without building a descriptor.

Although the methods above significantly increased the
efficiency of keypoint matching, they invariably deal with
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Figure 2. A reference keypoint is picked from a set of candidates and is used to induce distance profiles from the training images. Based
on the class/scene label of each image, a decision tree is grown from the distance profiles. Boosting is used to simultaneously select a set
of useful reference keypoints and combine their resulting decision trees into a classifier for particular scene recognition.

a single or a small number of objects or scenes (with the
exception of [15] where multiclass extension is possible but
not thoroughly explored). When there are many classes to
be matched, repeating the above methods multiple times is
computationally inefficient and also detrimental in terms of
memory usage since multiple classifiers or data structures
are repeatedly invoked or accessed.

We propose a method to improve the scalability of key-
point matching for particular scene recognition. Our idea is
to perform true multiclass classification based on using dis-
tance profiles as informative scene signatures. If induced by
appropriately selected reference keypoints, the distance pro-
files can distinguish multiple scenes, thus supporting a mul-
ticlass framework; refer to Fig. 1. From the distance pro-
files, we grow CART trees and combine them in a boosted
ensemble, producing a single overall multiclass classifier.
Fig. 2 illustrates the general idea. Given a new image the
classifier outputs a ranked list of scene matches. Guided
by the list a more precise search based on keypoint match-
ing proceeds. Besides improving the scalability of particu-
lar scene recognition, we demonstrate that distance profiles
and side information in general can be highly useful.

Our work bears the most similarity with [34, 27] where
a simple global image signature obtained from compressed
gabor filter outputs, called “gist” of the scene, is used to
quickly retrieve a list of possible results for a query image.
A more refined search is then conducted on the retrieved list
for accurate recognition. While the gist can be used to sepa-
rate widely divergent image categories, e.g. indoor, outdoor,
nature, mountain, it will most likely fail in particular scene
recognition since the images invariably belong to the same
rough category, i.e. outdoor with a building centered. This
is not an issue in [34, 27] since they are dealing with cate-
gory level recognition. In contrast, our work builds image
signatures from detected keypoints in a supervised manner.
The feature is used as an input to a fast multiclass classifier
which outputs a short list of possible places on which more
careful discrimination can proceed.

3. Generating Distance Profiles
Let I be an image and X = {xi}i=1,...,F be the set of F

local features of I , e.g. the xi’s are the SIFT descriptors of
keypoints detected in I . Let φ be the feature of a reference
keypoint. The set of distances induced by φ on X is

∆ = {di}i=1,...,F , (1)

where di = ‖xi − φ‖2 . (2)

The distance profile PI,φ of image I as induced by φ is
obtained by computing a histogram on ∆. More formally,

PI,φ(k) = #{dj | dj ∈ ∆, αk ≤ dj < βk}/F . (3)

Respectively αk and βk are the lower and upper edges of
the k-th bin. Note that the histogram is normalized by F .
The idea is that when φ is suitably selected, PI,φ can serve
as an effective representation for the scene in image I .

Without a priori restricting the type of feature in X or re-
sorting to ad-hoc scaling, it is hard to guarantee that the di’s
always stay within bounds of the binning range such that
PI,φ(k) are consistently scaled for all I and φ. Fortunately,
for methods such as SIFT [18] and SURF [3] where the
descriptors are normalized histograms by definition, this is
not a concern as long as φ is also an instance from the same
feature space, i.e. Eq. (2) will be bounded within [0, 2].

In the following “keypoint” and “descriptor” are used in-
terchangeably since we ignore the spatial position of local
features. Unless stated otherwise both words refer to the
descriptor vector of an interest point.

4. Training an Ensemble of Distance Profiles
A dataset of M images of N particular scenes is first

collected as {(Ii, yi)}i=1,...,M , where yi ∈ {1, . . . , N} is
the scene label of Ii. We assume that Mn sample images
are available for the n-th scene, i.e. M =

∑N
n=1Mn. This

is augmented with sets of keypoints {Xi}i=1,...,M detected
in each image. Note that the size of each Xi depends on
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the visual contents of Ii. Methods such as [25, 21, 10, 7]
are then applied on the dataset to extract the informative
keypoints B1, . . . ,BN of each scene, where

Bn ⊂
⋃

s=s1,...,sMn

Xs , sp 6= sq for p 6= q , (4)

and ys = n for all s. Depending on the specific
method, scene-specific models or classifiers are built using
B1, . . . ,BN . However, given a set of keypoints A at run-
time, invoking the methods involves a process equivalent to
exhaustively matching A to B1, . . . ,BN .

In this paper we select the reference keypoints from the
superset B = B1 ∪ · · · ∪ BN to generate distance profiles.
This is motivated by two reasons: (1) Keypoints in B have
been determined to be highly discriminative, i.e. existing in
a scene but not others, thus they have a higher probability in
inducing useful signatures, and (2) there is no need to store
two different libraries of keypoints if a coarse-to-fine search
strategy is adopted since those in B support both component
recognition algorithms. The following subsections describe
how to carry out the selection of reference keypoints.

4.1. Growing Weak Learners

Let there be R candidate reference keypoints φj , where
j = 1, . . . , R and φj is from the set B. As a preprocessing
step, for all φj we generate K-bin distance profiles for the
training images according to Section 3, yielding

{PIi,φj (k)}i=1,...,M, j=1,...,R, k=1,...,K . (5)

Without forgetting that each distance profile is a histogram
of values, we abbreviate the above to Pi,j . For each candi-
date φj , we grow CART trees [5] which are well suited for
multiclass classification to classify Pi,j based on labels yi.
The trees will be used as weak learners in boosting.

Tree nodes are split along the dimensions (bins) of the
distance profiles. At each node, the best split is defined to
be the one which allows the maximum reduction in Gini
impurity. The impurity at node e is defined as

im(e) =
∑
p6=q

f(e, p)f(e, q) = 1−
∑

n=1,...,N

f(e, n)2 , (6)

where f(e, .) is the probability mass function of class labels
at node e. This is approximated by an empirical value based
on the samples which arrive at e, e.g. at the root node,

f(0, n) =
∑M
i=1 δ(yi − n)

M
, (7)

where δ is the Kronecker delta function. For a candidate
split at node e, the reduction in impurity achieved is

∆im(e) = im(e)− im(el)− im(er) , (8)

where el and er are the left and right child nodes of e ac-
cording to the split. Searching for the optimal split at each
node requires O(KM) computations, therefore it is benefi-
cial to restrict K to a small value. Experiments in Section 5
show that K ∈ [5, 15] is sufficient for good performance.

For each node, we adopt the usual stopping criterion of
halting subsequent splits when no further reduction in im-
purity is achievable. In the interest of creating a fast scene
recognition system, we also impose an additional criterion
which restricts a tree to a maximum depth— a value we set
to dlog2Ne, i.e. grow the smallest tree possible for sepa-
rating N classes. For example, for N = 10, the maximum
depth is 4. Since we do not perform pruning for the trees,
this also prevents overfitting.

4.2. Selecting Reference Keypoints with Boosting

For each reference keypoint φj , the previous operations
train a tree classifier τj(·) which takes a distance profile as
input and predicts one of the possible N class labels for it.
The trees form a pool of weak learners which, along with
the dataset, we subject to a boosting procedure. Boosting
will select and combine a T number of trees (e.g. T = 100)
based on empirical accuracy to form a strong overall classi-
fier. Naturally this also yields a list of reference keypoints
useful for inducing highly discriminative distance profiles.

The SAMME algorithm [37] was proposed to extend the
popular AdaBoost algorithm [8] to multiclass problems. It
overcomes the limitation of AdaBoost which requires each
weak learner to have more than 50% empirical accuracy—
a relatively easy task in binary classification but a tall order
in an N class problem. Table 1 lists the SAMME algorithm
used in conjunction with trees as weak learners trained from
distance profiles for particular scene recognition. A major
difference between SAMME and AdaBoost is the addition
of the log(N − 1) term in Eq. (10) which allows a weak
learner’s accuracy, given by (1 − εtj∗), to be more than just
1/N (i.e. random guessing for an N class problem) to en-
sure a non-negative contribution αt. This seemingly heuris-
tical modification makes the algorithm correspond to fitting
a forward stagewise additive model using a multi-class ex-
ponential loss function [37].

We fit each CART tree τj to the sample weights (Step
3 in Table 1) by reweighting the labels associated with the
leaf nodes of τj . More specifically, at a particular iteration t
letwi reflect the current set of weights. When fitting tree τj ,
let I(Pi,j |ψ) indicate whether a particular leaf node ψ of τj
contains the distance profile of sample Ii, i.e. I(Pi,j |ψ) = 1
if Pi,j arrived at ψ, otherwise 0. The label assigned to ψ is

l∗ = arg max
l

M∑
i=1

wi · I(Pi,j |ψ)δ(yi − l) (12)

or τ tj (Pi,j) = l∗ if I(Pi,j |ψ) = 1. In other words, assign
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1. Initialize M sample weights wi = 1/M .
2. For t = 1, . . . , T do
3. Fit each tree τj to the weights wi (see text).
4. For each fitted tree τ tj , evaluate error

εtj =
M∑
i=1

wi(1− δ(τ tj (Pi,j)− yi))/
M∑
i=1

wi . (9)

5. Find j∗ = arg minj εtj and set ht = τ tj∗ .
6. Store current weights wi along with ht.
7. Compute t-th weak learner contribution

αt = log
1− εtj∗
εtj∗

+ log(N − 1) . (10)

8. Update sample weights as

wi ← wi · expα
t(1−δ(τt

j∗ (Pi,j∗ )−yi)) . (11)

9. end for
10. Output overall classifier with T weak learners ht

(see Section 4.3).
Table 1. Multiclass AdaBoost on distance profiles.

label l∗ to distance profiles Pi,j which descend into ψ. This
means that samples wrongly classified in the previous iter-
ation have more say in determining the leaf labels, i.e. the
sample weights affect the behaviour of the fitted tree τ tj .

4.3. An Ensemble of Trees for Scene Recognition

For the task of multiclass particular scene recognition,
we design a novel ensemble classifier based on the selected
weak learners. Instead of adopting a winner takes all prin-
ciple as in a conventional boosted ensemble, we allow each
component weak learner to cast weighted votes for more
than one class label. This contributes towards the stability
of the classifier in a multiclass setting especially when the
number of classes N is large.

Let function C(ht, P ) return an N -vector, where the n-
th component is 1 if the leaf node of ht into which distance
profile P has descended contains training samples1 of class
n, and zero if otherwise. Then, the proposed classifier en-
semble outputs an N -vector L defined as

L =
T∑
t=1

αt · C(ht, P )/
T∑
t=1

αt (13)

Note that for each t, distance profile P is generated from
a testing image according to the reference keypoint associ-
ated with ht. The form of the ensemble differs from the
traditional boosted combination where each component ht

gives only one label ht(P ) ∈ {1, . . . , N} as output.
The result in L represents the confidence value of match-

ing a query image to each of the N scenes in the database.

1More precisely, distance profiles of training samples.

We sort the values in L decreasingly to obtain a ranked list
of possible scene given a query image. Scenes at the n-th
percentile and above can then be subjected to a more care-
ful analysis, e.g. carry out discriminative keypoint matching
for scenes at the top 10% of the ranked list.

5. Results
We performed experiments to investigate the ability of

the proposed method in selecting useful reference keypoints
for particular scene recognition. An attribute of the datasets
we chose is the availability of a large number of scene
classes (N > 40). This allows us to test the scalability of
the resulting classifiers against the number of scene classes.
The experiments below were implemented in Matlab.

Tourist Sights Graz 60 (TSG-60). The TSG-60 dataset2

contains images of 60 tourist spots in the city of Graz. The
images are mainly frontal facades of buildings of touristic
interest. Each building was taken in 3 views correspond-
ing roughly to left, frontal and right. The images are origi-
nally in colour, of size 320×240 pixels, in both portrait and
landscape orientation, and compressed in JPEG format. We
convert the images to grayscale for our experiments.

We partition the dataset into a training and testing set.
This was done by randomly choosing, for each building,
one image for testing and keeping the other two for train-
ing. Several algorithms/settings (to be described shortly) for
particular scene recognition are then applied with the results
recorded. The steps of partitioning, training and testing are
repeated five times and we present the averaged results.

First, SURF keypoints [3] are detected in all images. On
the training images, we run the algorithm of [21] to uni-
formly select 100 discriminative keypoints for each scene,
i.e. obtain B1, . . . ,B60. Following [21] a binary image clas-
sifier is constructed for each scene based on the discrimi-
native keypoints (see [21] for details). Each testing image
is given the label of the binary classifier which returns the
highest confidence. There are thus 6000 candidate reference
keypoints which we used to generate 15-bin distance pro-
files for the training set. These are then subjected to the pro-
posed algorithm described in Section 4 where 100 reference
keypoints or weak learners are chosen and boosted. For
each testing image, we retrieve the top 10% of the ranked
list (i.e. 6 scenes only) given by the boosted ensemble of
trees. The result is deemed correct if the ground truth label
exists in the shortlist. Finally, we combine the previous two
algorithms to yield a third method. This is done by invoking
the classifiers of only the 6 shortlisted scenes and compar-
ing their output. Instead of giving a ranked list, this method
assigns a single label to a testing image. Table 2 presents
the obtained results.

The image classifiers provide a benchmark recognition

2Available at http://dib.joanneum.at/cape/tsg-60/.

1243



# Method/Setting % correct
1 Image classifiers [21] 98.33
2 Distance profiles (top 10% shortlist) 95.00
3 Distance profiles + Image classifiers 95.00

Table 2. Recognition results on the TSG-60 dataset.

accuracy of 98.33%. The results also show that in 95% of
the queries, the correct label exists in the top 10% shortlist
returned by the tree ensemble. The combination of the two
algorithms did not degrade the performance as a correct rate
of 95% was also returned. It does not immediately seem
that using distance profiles for particular scene recognition
is useful. The true advantage, however, lies in a big increase
in computational efficiency as we show next.

# Method/Setting Avg time (s)
1 Image classifiers [21] 0.9047
2 Img classifiers + kd-tree 0.5049
3 Distance profiles (10% shortlist) 0.2260
4 Dist. prof. + Img classifiers 0.3158
5 Dist. prof. + Img class. + kd-tree 0.2759

Table 3. Testing duration per image on the TSG-60 dataset (ex-
cluding keypoint/descriptor computation time). Note that the time
for methods 3–5 includes distance profile generation.

Table 3 depicts the average duration of processing a test-
ing image of various algorithms/settings. Invoking the im-
age classifier requires a step equivalent to nearest neighbour
matching (see [21] and Section 4), and when done via ex-
haustive searches it requires ≈ 0.9s for all 60 scenes. This
can be improved to ≈ 0.5s by indexing and searching each
set of discriminative keypoint in a kd-tree. Obtaining the
top 6 scenes (top 10%) using the proposed method requires
only ≈ 0.23s for 60 scenes (and as we shall see in subse-
quent experiments, this duration is quite independent on the
size of the dataset). Invoking the corresponding 6 image
classifiers with and without kd-tree on the retrieved list re-
quires a total of only ≈ 0.28s and ≈ 0.32s. This represents
a three-fold improvement in speed with only minor impact
to the recognition accuracy.

Zurich Buildings Database (ZuBuD). We repeat the
previous experiment on a much larger dataset. The ZuBuD
dataset3 comprises of 201 buildings of historical or architec-
tural interest in Zurich. Imaging conditions vary in view-
point, season (lighting) and existence of occlusions. Each
building has 5 images in the training set (1005 images in
total) while the testing set contains 115 images. The sheer
size of the dataset (in terms of the number of scene classes)
and the much larger variability of imaging conditions make
ZuBuD a more difficult dataset than TSG-60. Nonetheless,
we retain the same parameters from the previous experi-
ment: select 100 discriminative SURF keypoints for each

3Available at http://www.vision.ee.ethz.ch/datasets/index.en.html.

building using [21], input the 20,100 candidate reference
keypoints into the proposed method, generate 15-bin dis-
tance profiles, select 100 weak learners for the tree ensem-
ble (despite a much larger number of classes), and retrieve
only the top-10% from the ranked list (i.e. top 20 matches)
given by the tree ensemble. Table 4 presents the our results
along with several other reported results for comparisons.

# Method/Setting % correct
1 Random subwindows [19] 95.65
2 Image classifiers [21] 92.17
3 Distance profiles (top 10% shortlist) 87.83
4 Distance profiles + Image classifiers 84.35
5 Indexing local appearance [31] 40.87

Table 4. Recognition results on the ZuBuD dataset.

It can be seen that the accuracy varies greatly depending
on the method. The best result of 95.65% was achieved
by [19] while a poor 40.87% was given by [31]. Using
distance profiles and image classifiers gave a competent re-
sult of 84.35%. The performance of the proposed method
can certainly be further improved, for example, by coupling
methods 1 and 3 in Table 4, or by using a larger tree en-
semble size. We do not explore these options here, since
the emphasis is on the potential gain in computational effi-
ciency from using distance profiles.

# Method/Setting Avg time (s)
1 Image classifiers [21] 2.2017
2 Img classifiers + kdtree 1.3324
3 Distance profiles (10% shortlist) 0.2719
4 Dist. prof. + Img classifiers 0.4909
5 Dist. prof. + Img class. + kdtree 0.4032

Table 5. Testing duration per image on the ZuBuD dataset (exclud-
ing keypoint/descriptor computation time). Note that the time for
methods 3–5 includes distance profile generation.

The average testing time for each method is presented in
Table 5. Invoking tree ensembles based on distance profiles
and executing shortlisted scene classifiers only managed
to produce a more than four-fold improvement in runtime
computational speed. Most importantly, we highlight that
processing an image with the proposed method requires ap-
proximately the same time as for the TSG-60 dataset (com-
pare methods 3 in Tables 3 and 5) despite a large increase
in the number of scene classes (from 60 to 201). This is
due to the inherent ability of the tree ensembles to handle
multiple classes. Of course, a major enabling factor is the
informative scene signatures that can distinguish multiple
scenes induced by the chosen reference keypoints.

Campus Dataset. We built a more challenging dataset
to test our ideas. Images of buildings of interest around our
campus were taken on different days. Large variations in
viewing angles and positions were deliberately introduced.
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In total 44 buildings were captured with the number of im-
ages amounting to about 20,000. A separate testing set of
1,400 images was also collected. We call this the “Campus”
dataset. Fig. 3 shows a few samples.

Figure 3. Sample images from the Campus dataset.

We use SIFT keypoints for the Campus dataset. Simi-
lar to the previous experiments, we select 100 disriminative
keypoints for each scene using [21], subject the 4,400 can-
didate reference keypoints to the proposed algorithm, gen-
erate 15-bin distance profiles, select 100 weak learners for
the tree ensemble, and return only the top-10% of the ranked
list (top 5 matches) from the tree ensemble. Table 6 depicts
the obtained recognition results.

# Method/Setting % correct
1 Image classifiers [21] 80.06
2 Distance profiles (top 10% shortlist) 91.55
3 Distance profiles + Image classifiers 81.02

Table 6. Recognition results on the Campus dataset.

The proposed method gave comparable performance to
the baseline method of the image classifiers, where both
scored an ≈ 80% correct rate. In the Campus dataset,
however, the retrieval rate of the tree ensemble at ≈ 92%
is higher than the baseline accuracy. We suspect this is
due to the existence of more diversified buildings in the
dataset (e.g. skyscrapers, residential houses, office com-
plexes) which gave rise to a larger variety of candidate ref-
erence keypoints. Thus more effective distance profiles and
tree ensembles could be created.

# Method/Setting Avg time (s)
1 Image classifiers [21] 1.3178
2 Img classifiers + kdtree 1.1382
3 Distance profiles (10% shortlist) 0.2250
4 Dist. prof. + Img classifiers 0.3637
5 Dist. prof. + Img class. + kdtree 0.3468

Table 7. Testing duration per image on the Campus dataset (ex-
cluding keypoint/descriptor computation time). Note that the time
for methods 3–5 includes distance profile generation.

Table 7 presents a comparison on proceessing times for
the Campus dataset. A straightforward application of kd-

tree indexing did not produce a dramatic improvement in
the testing speed of the image classifiers. This is most likely
due to the fact that kd-trees scale badly against the ambi-
ent dimensionality (the SIFT descriptor has 128 dimensions
while the SURF descriptor has only 64 dimensions). It is
well known [30] that at high dimensions searching a kd-
tree structure is only as efficient as an exhaustive search, al-
though methods have been proposed to rectify this [4, 32].
It occurs again here that the tree ensemble required almost
the same time as in the previous experiments to process a
testing image— compare method 3 in Tables 3, 5 and 7.
The coupling of the tree ensemble and the image classifiers
produced almost a three-fold gain in computational speed.

6. Discussion and Conclusion

The results obtained from the three datasets are summa-
rized in Fig. 4. In terms of recognition accuracy, the pro-
posed method compares favourably to the baseline method
of training classifiers from discriminative keypoints [21].
We also draw attention to the computational speed of
the proposed method which is consistent across the three
datasets. In contrast, since the image classifiers are eval-
uated in a binary classification style, their speed fluctuates
heavily depending on the number of scene classes.
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Figure 4. Summary of experimental results.

It is easy to see why the proposed method scales more ef-
ficiently against the number of scene classesN compared to
the image classifiers. The distance profiles were generated
to be highly discriminative among multiple scenes and the
trees grown from the distance profiles can handle multiclass
classification naturally. On the other hand, the image classi-
fiers require N evaluations of binary classification. From a
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computational standpoint, given a set of F keypoints from
a test image, a tree ensemble of size T requires only T × F
(independent of N ) computations of descriptor distances.
Conversely, evaluating N binary image classifiers of size T
each will need N × T × F calculations of distances. Note
that the time obtained in the experiments can be further re-
duced with better implementation.

The experiments show that the proposed distance profile
for scene images is useful in particular place recognition.
More generally, our work also demonstrates that usually ig-
nored side information can be serve useful purposes.
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